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Abstract

A method for identification of complex shear modulus from measured shear strains on a circular disc subjected to a

transient torque at its centre has been established. It is based on the evolution of an outgoing shear wave between two

radial positions at which the associated shear strains are measured. The two-dimensional shear wave solutions used are

exact in the sense of three-dimensional theory. Therefore, in principle, there is no frequency beyond which they are not

valid. The method requires a minimum disc size, which is related to the duration of the load. The non-parametric results

become inaccurate at frequencies near zero and at certain problematic frequencies where the excitation of the disc is weak

or non-existent. These frequencies may be moved outside the frequency range of interest by sufficiently decreasing the

duration of the load. If there are problematic frequencies within this range, the results of parametric identification become

more accurate than those of non-parametric identification. Parametric results from experimental tests with loads having

different amplitudes and durations agree well with each other in accord with the assumed linearity of the tested

polypropylene material.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Polymers and other materials with viscoelastic behaviour are common in engineering applications. In their
linear regime, such materials are characterized by two independent complex-valued functions of frequency [1]
such as the complex extension modulus and the complex shear modulus. Other complex material functions,
such as the bulk modulus and the complex Poisson’s ratio, can be expressed in terms of these two functions.
Theocaris [2] considered the relative magnitudes of the complex modules, and Pritz [3] examined their
frequency dependencies. In engineering applications, frequencies of importance are commonly in the range
from hundreds of Hz to tens of kHz, where identification methods based on wave propagation can be used.

Viscoelastic waves associated with extension or torsion of a bar specimen can be represented by three
complex-valued functions of frequency, viz., a complex wavenumber and two complex amplitudes
representing waves travelling through the bar in opposite directions. The complex wavenumber can be
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a inner radius
A function associated with outgoing wave
b outer radius
B function associated with ingoing wave
c complex wave speed
e residual, error
e residual vector
f frequency, function
G shear modulus, constitutive parameter
H Hankel function
p parameter vector
r radius
t time
u, v displacement

Greek letters

b complex wavenumber
g shear strain
G function representing model

Z viscosity
x argument
r density
t shear stress
f angular coordinate, function
o angular frequency

Superscripts

d dissipative
e elastic
M measured

Subscripts

1, 2 identification of measurement
a at inner radius
n ingoing
opt optimum
p outgoing
T transverse
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expressed in terms of the complex extension or shear modulus, the density and the frequency. Therefore, in
general, the complex modules can be estimated on the basis of three or more independent measurements of
quantities such as displacements, strains, particle velocities or accelerations [4–12]. The number of
measurements required is reduced if the conditions are such that one of the two waves travelling in opposite
directions can be discarded or if a well-defined boundary condition can be used [13–19]. In the case of flexural
waves, five or more independent measurements are generally required [20].

No published work has been found on the use of viscoelastic axially symmetric shear waves in a disc
specimen for identification of the complex shear modulus. If a viscoelastic material is available or used as
plates rather than bars, it may be advantageous to use a disc specimen. Even if the materials of a plate and a
bar have the same name, differences in material behaviour can be expected due to the different geometries and
manufacturing processes. For example, the material properties of a plate may have gradients in the thickness
direction while those of a bar with circular cross-section may have gradients in the radial direction. In the case
of a disc specimen, two-dimensional shear wave solutions that are exact in the sense of three-dimensional
theory can be used. Therefore, in principle, there is no frequency beyond which the theoretical basis for such
an identification method is not applicable.

Similarly as above, viscoelastic axially symmetric shear waves in a disc specimen can be represented by a
complex wavenumber and two complex amplitudes representing outgoing and ingoing shear waves. The
complex wavenumber can be expressed in terms of the complex shear modulus, the density and the frequency.
Therefore, in general, the complex shear modulus can be estimated on the basis of, e.g., measurement of shear
strains at two radial positions and consideration of the boundary condition at the rim of the disc. If the disc is
so large that ingoing reflected shear waves can be discarded, two shear strain measurements suffice. In this
case, the disc can be considered infinite and therefore the geometry of the rim of the disc is immaterial.

The aim of this study is to develop a method for identification of complex shear modulus that is based on
the evolution of viscoelastic axially symmetric shear waves in a disc specimen. In the following section, the
theoretical basis for the method will be developed. In Section 3, the method will be studied through numerical
simulation, and in Section 4 it will be implemented experimentally. The results of simulations and
experimental tests will be discussed in Section 5, and conclusions will be summarized in Section 6.
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2. Theory

2.1. Axially symmetric shear waves in a circular disc

Axially symmetric shear waves in a circular disc with inner radius a, outer radius b and constant thicknesses
are considered. The material of the disc is assumed to be homogeneous, isotropic and linearly viscoelastic with
complex shear modulus G(o), where o ¼ 2pf is the angular frequency. The shear waves in the disc are
associated with the displacement v(r, t) ¼ uf(r, t), the shear strain g(r, t) ¼ grf(r, t), and the shear stress
t(r, t) ¼ trf(r, t), where (r,f, z) are cylindrical coordinates and t is time. These dependent variables are
interrelated through t̂ ¼ Gĝ and ĝ ¼ qv̂=qr� v̂=r, where the notation f̂ ðr;oÞ is used for the Fourier transformR1
�1

f ðr; tÞe�iot dt with respect to t of the function f(r, t).
In terms of displacement, the shear waves in the disc are governed by the differential equation

r2
q2v̂

qr2
þ r

qv̂

qr
þ ½ðbrÞ2 � 1�v̂ ¼ 0, (1)

where b ¼ o/cT is a complex wavenumber and cT ¼ (G/r)1/2 is a complex wave speed. The general solution of
this equation is a linear combination of the Hankel functions H

ð1Þ
1 ðxÞ and H

ð2Þ
1 ðxÞ with x ¼ br, which have the

asymptotic expansions (2/px)1/2e�i3p/4eix and (2/px)1/2ei3p/4e�ix, respectively, for large x. By inverse Fourier
transformation and from properties of the function G(o) (real part even positive function of o and imaginary
part odd function of o, positive for o40) it can be shown that these asymptotic expressions represent damped
shear waves which propagate in the directions of decreasing and increasing r, respectively. Therefore, the
general solution of Eq. (1) can be written as

v̂ ¼ v̂pH
ð2Þ
1 ðbrÞ þ v̂nH

ð1Þ
1 ðbrÞ, (2)

where v̂pðoÞ and v̂nðoÞ represent the displacement amplitudes of outgoing and ingoing shear waves,
respectively.

By Eq. (2) and the differentiation rule ðd=dxÞH ðiÞ1 ðxÞ ¼ H
ðiÞ
0 ðxÞ � ð1=xÞH

ðiÞ
1 ðxÞ (i ¼ 1, 2) the general solution

for the shear strain ĝ ¼ qv̂=qr� v̂=r in the disc can be expressed as

ĝ ¼ ĝpAðbrÞ þ ĝnBðbrÞ (3)

with

AðxÞ ¼ H
ð2Þ
0 ðxÞ �

2

x
H
ð2Þ
1 ðxÞ; BðxÞ ¼ H

ð1Þ
0 ðxÞ �

2

x
H
ð1Þ
1 ðxÞ, (4)

where ĝp ¼ bv̂p and ĝn ¼ bv̂n represent the shear strain amplitudes of outgoing and ingoing shear waves,
respectively.
2.2. Boundary conditions and solutions for shear strain

It is assumed that the disc is loaded by a transient shear stress t̂ða;oÞ ¼ t̂aðoÞ on its inner boundary. In
terms of shear strain, this corresponds to the boundary condition

ĝða;oÞ ¼ ĝaðoÞ ¼
t̂aðoÞ
GðoÞ

. (5)

For an infinite disc (b ¼N) there are no ingoing shear waves, i.e.,

ĝn ¼ 0. (6)

In this case, the general solution (3) and the boundary conditions (5) and (6) give

ĝ ¼
AðbrÞ

AðbaÞ
ĝa. (7)
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For a finite disc with free outer boundary t̂ðb;oÞ ¼ 0 and therefore

ĝðb;oÞ ¼ 0. (8)

In this case, the general solution (3) and the boundary conditions (5) and (8) give

ĝ ¼
BðbbÞAðbrÞ � AðbbÞBðbrÞ

BðbbÞAðbaÞ � AðbbÞBðbaÞ
ĝa. (9)

2.3. Identification of complex shear modulus

It is now assumed that ĝðr1;oÞ ¼ ĝM
1 ðoÞ and ĝðr2;oÞ ¼ ĝM

2 ðoÞ are obtained from ideal measurements of
shear strains at the radii r ¼ r1 and r2, respectively, with aor1or2ob. Then, by Eq. (7) for the infinite disc and
Eq. (9) for the finite disc, there is the relation

ĝM
1 G2ðbÞ � ĝM

2 G1ðbÞ ¼ 0 (10)

between these shear strains. The functions Gi(b) (i ¼ 1, 2) are independent of the excitation ĝaðoÞ and are
taken as

GiðbÞ ¼ AðbriÞ (11)

for the infinite disc and

GiðbÞ ¼ BðbbÞAðbriÞ � AðbbÞBðbriÞ (12)

for the finite disc.
For discrete angular frequencies oj at which shear waves are generated in the disc, Eq. (10) can generally be

solved for b(oj). Then, by using the relations b(oj) ¼ oj/cT(oj) and cT(oj) ¼ [G(oj)/r]
1/2, one can obtain the

non-parametric result

GðojÞ ¼ r
oj

bðojÞ

� �1=2
(13)

for the complex shear modulus. Numerical difficulties may occur at frequencies where the excitation of the disc
is weak.

Parametric results for the complex shear modulus can be obtained by using, e.g., the three-parameter
viscoelastic standard model

Gðoj ; pÞ ¼ Ge Gd þ iojZd

Ge þ Gd þ iojZd
(14)

with parameter vector p ¼ [Ge,Gd,Zd]T illustrated in Fig. 1. For this model, the complex wavenumber can be
expressed

bðoj ; pÞ ¼ oj

r
Gðoj ; pÞ

� �1=2
. (15)
Ge

Gd

�d

Fig. 1. Three-parameter viscoelastic standard model.
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If this expression and measured shear strains ĝM
1 ðojÞ and ĝM

2 ðojÞ, obtained from a real or simulated
experiment, are substituted into the left member of Eq. (10) for a given parameter vector p, the result will be

ĝM
1 ðojÞG2½bðoj ; pÞ� � ĝM

2 ðojÞG1½bðoj ; pÞ� ¼ ejðpÞ, (16)

where the residual ej(p) at angular frequency oj is generally different from zero. A global measure of the
deviation between experimental data, represented by ĝM

1 ðojÞ and ĝM
2 ðojÞ, and model prediction, represented by

G1[b(oj,p)] and G2[b(oj,p)], at the angular frequencies o1, o2,y, on is given by

eðpÞ
�� ��2 ¼ eðpÞ

T
eðpÞ ¼ e1ðpÞ

�� ��2 þ e2ðpÞ
�� ��2 þ � � � þ enðpÞ

�� ��2, (17)

where e(p) ¼ [e1(p), e2(p), y, en(p)]
T is the residual vector. The parameter vector p of the material model is

determined as the one that minimizes this expression.
The error ej ¼ e(oj) at the angular frequency oj for the optimal parameter vector p ¼ popt is defined as the

ratio of the magnitude of the residual ej(popt) to that of the first term of Eq. (16), i.e.,

e�j ¼
jejðpoptÞj

jfjðpoptÞj
; fjðpoptÞ ¼ ĝM

1 ðojÞG2½bðoj ; poptÞ�. (18)

If the conditions are such that the complete strain history of the outgoing shear wave generated at the inner
radius r ¼ a can be measured at the radii r ¼ r1 and r2 before a reflected shear wave from the outer radius
r ¼ b has reached r ¼ r2, the disc can be considered infinite. Computationally, this case is much easier than
that of a finite disc where the measured shear strains consist of superimposed contributions from out- and
ingoing shear waves. In the non-parametric and parametric identifications that follow in Sections 3 and 4;
therefore, the conditions will be considered to be such that the disc can be taken as infinite. Consequently, all
identification procedures in these sections will make use of Eq. (11), valid for an infinite disc. In contrast, the
numerical simulations of experimental tests in Section 3 will make use of Eq. (9), valid for a finite disc.

3. Identification based on numerical simulations

In order to study the identification procedures of Section 2.3, identification of the complex shear modulus of
a linearly viscoelastic material was first based on numerical simulations of experimental tests. The material
of the disc was described by the three-parameter viscoelastic standard model with Ge

¼ 1.005GPa,
Gd
¼ 1.837GPa and Zd

¼ 0.122MPa s, and the density was taken to be r ¼ 915 kg/m3. The constitutive
parameters were based on non-parametric data for polypropylene (PP) obtained in experimental tests with a
bar specimen [12]. The radii of the disc were taken as those of the hub and the rim, a ¼ 30mm and
b ¼ 500mm, of the disc used in the experimental tests to be described in Section 4. Two cases of load were
considered. In both of them, the shear stress ta(t) on the inner radius of the disc was prescribed as a
rectangular pulse. In the first case, the duration t0 of the load was taken as 240 ms. In the second case, it was
taken five times shorter, i.e., 48 ms.

The simulated shear strains g1
M(t) and g2

M(t) were obtained from Eq. (9) for a finite disc. They were regarded
as measured at the radii r1 ¼ 60 and r2 ¼ 96mm, respectively, and included the effects of both outgoing and
ingoing shear waves, similarly as in the experimental tests of Section 4. From them, the complex shear
modulus G(o) was identified non-parametrically by use of Eqs. (10), (11) and (13), and parametrically by use
of Eqs. (11) and (14)–(17). Thus, in both identification procedures the effects of ingoing waves, if any, were
neglected. Transformations between the time and frequency domains were carried out by use of the fast
Fourier transform algorithm with a sampling frequency of 1MHz. The minimization of the expression given
by Eq. (17) was carried out with the function fminsearch of MATLAB Version 7.2. This function is a local
minimizer, which uses a Nelder–Meade simplex search. The constitutive parameters used in the simulated
tests, and the start values and results of parametric identification are summarized in Table 1. It was verified
that the result for the complex shear modulus did not depend significantly on these start values.

The first simulated identification test is illustrated in Fig. 2, where (a) shows the prescribed load on the disc
and (b) the measured shear strains. The arrival at radius r2 of the shear wave reflected from the rim of the
disc is indicated by R. Only the measured shear strains between the two full vertical lines were used. In this
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Table 1

Standard linear solid parameters in numerical simulations

Parameter Simulation value Start value Estimated value

Test 1 Test 2

Ge (GPa) 1.005 1.623 0.9613 1.004

Gd (GPa) 1.837 0.952 0.7133 1.827

Zd (MPa s) 0.122 0.064 0.1682 0.123
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way, the ingoing shear wave reflected from the rim was excluded in accord with the employment of the infinite-
disc model for identification. Also, the tail of the outgoing shear wave was slightly truncated. This truncation
was not necessary; it was made in order to illustrate the errors it generates.

Results for the complex shear modulus G up to 20 kHz are shown in Fig. 3, where the upper curves in each
diagram are the real parts and the lower curves are the imaginary parts. Fig. 3(a) shows the result of non-
parametric identification (thin curves with dot marks), and Fig. 3(b) shows that of parametric identification
(thick curves) carried out in the frequency range 1–20 kHz. In both diagrams, the results of identification are
compared with the parametric model used in the simulation (thin curves).

The second simulated identification test is illustrated in Fig. 4. Also here it can be seen that outgoing
shear waves only were used in accord with the employment of the infinite-disc model for identification. In this
case, however, there was practically no truncation due to the short duration of the load. Results for
the complex shear modulus G, with explanations as above, are shown in Fig. 5, where (a) shows the result of
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non-parametric identification, and (b) shows that of parametric identification carried out in the frequency
range 1–20 kHz. In both diagrams, the results of identification are compared with the parametric model used
in the simulation (thin curves).

4. Identification based on experimental tests

Experimental identification tests were carried out with the set-up shown in Fig. 6. A disc made of PP with
6mm thickness and outer diameter 1000mm was attached to a hub at its centre. The hub, designed for axial
symmetry, sufficient strength and low inertia, is shown in Fig. 7(a). It consisted of a 2.7mm thick circular steel
plate with diameter 60mm and a 3.6mm thick aluminium ring with diameters 17 and 60mm. The plates with
the disc in between were kept together by 16 M4 screws, half of them evenly distributed along a circle with
radius 30mm and half at intermediate positions along a circle with radius 50mm. The steel plate was welded
to one end of a cylindrical steel shaft with length 6470mm and diameter 20mm. At its opposite end, the shaft
was preloaded in torsion between two clamps shown in Fig. 7(b). When the clamp closest to the disc was
suddenly released by fracturing a pre-notched bolt, a torsional wave was generated in the shaft. This wave,
with length approximately twice the inter-clamp distance, propagated towards the disc at which it was
partially reflected. As a result, the disc was loaded by a transient torque producing an outgoing shear wave.
The length of the shaft was chosen so that torsional waves, after reflections at the two ends of the shaft, would
not disturb shear strain measurements on the disc.

The strain gauges used to measure shear strains on the disc were double-element gauges with active length
2mm (MTL, QFCT-2-350-11-6F-1LT). At each radial position, two strain gauges were mounted opposite to
each other on each side of the disc so that their elements were oriented in directions 7451 relative to the radial
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direction. The four elements of such a strain gauge pair at each radial position formed branches of a
Wheatstone bridge so that the output voltage of the bridge was proportional to the shear strain but insensitive
to bending. The output signals from the bridges constituted input to bridge amplifiers (Measurement Group,
2210), the output signals of which were sampled simultaneously at 1MHz and recorded by use of a 12-bit data
acquisition board (Strategic Test, UF-3122). Shunt calibration was used.

Three experimental tests were carried out at room temperature of approximately 22 1C. The amplitude of
the load was controlled by the preload of the shaft (high, low), and the duration of the load by the distance
between the clamps (long distance 165mm, and short distance 110mm). In Tests a–c, the preload of the shaft
and the distance between the clamps were taken as high-long, low-long and low-short, respectively. The same
non-parametric and parametric identification procedures, based on an infinite disc, were used as for the
simulated tests. Also, the parametric identification was carried out in the same frequency interval 3–20 kHz
and made use of the same parameter start values as for these tests. The parameter start values and results of
parametric identification are summarized in Table 2. It was verified that the result for the complex shear
modulus did not depend significantly on these start values.

The results of the experimental identification tests are shown in Figs. 8–10. Figs. 8(a)–(c) show the measured
shear strains g1

M and g2
M from Tests a–c, respectively. The identifications were based on the measured shear

strains between the two full vertical lines. In this way, similarly as in the simulated tests, the reflected shear
wave from the rim of the disc was excluded in accord with the employment of the infinite-disc model for
identification. Non-parametric and parametric results up to 20 kHz for the complex shear modulus G from
Tests a–c are shown in Figs. 9(a)–(c), respectively, where the upper curves in each diagram are the real parts
and the lower curves are the imaginary parts. The parametric identification was carried out in the frequency
range 3–20 kHz. The parametric results can be compared in Fig. 10(a), and the corresponding results for the
error e*(oj) ¼ ej*, defined in Eq. (18), are shown in Fig. 10(b).
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5. Discussion

A method for identification of complex shear modulus from measured shear strains on a circular disc
subjected to a transient torque at its centre has been established. The method is based on the evolution of an
outgoing shear wave between two radial positions at which the associated shear strains are measured.
Therefore, the disc must have a certain minimum size so that the front of the outgoing shear wave is able to
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Fig. 7. Details of experimental set-up: (a) hub of the disc and (b) clamps and release mechanism.

Table 2

Standard linear solid parameters in experimental tests

Parameter Start value Estimated value

Test a Test b Test c

Ge (GPa) 1.623 1.231 1.186 1.170

Gd (GPa) 0.952 3.703 3.636 3.329

Zd (MPa s) 0.064 0.116 0.128 0.183

S. Mousavi et al. / Journal of Sound and Vibration 313 (2008) 567–580576
travel from the outermost strain gauge position to the rim of the disc and back without interfering with the
outgoing shear wave at this position during the period of measurement. Clearly, this minimum size is related
to the duration of the load. The method is a two-dimensional analogue of methods based on the evolution of a
wave between two axial positions of a bar specimen, e.g., Refs. [15–17].

It has also been shown that, by considering the boundary condition at the rim of the disc, one can identify
the complex shear modulus without being restricted to outgoing shear waves. This procedure is a two-
dimensional analogue of another procedure used for bar specimens, e.g., Refs. [5,7,10–12], and has the
advantage of not requiring a minimum size of the disc specimen. However, it is computationally complex and
may lead to reduced accuracy.

The two-dimensional shear wave solutions used are exact in the sense of three-dimensional theory and
therefore, in principle, there is no frequency beyond which the theoretical basis of the methods is not valid.
However, there are practical limitations as shear waves must be generated in accord with the boundary
condition (5), stating that there must be no variation of shear stress in the circumferential direction or through
the thickness of the disc.

In Fig. 3(a), which shows the non-parametric result from the first simulated identification test, it can be seen
that the identification is inaccurate at the frequency zero and at certain non-zero frequencies. The inaccuracy
at f ¼ 0 is due to the truncation of the measured shear strains which can be seen in Fig. 2(b). The truncation
leads to errors in the Fourier transforms ĝM

i ð0Þ ¼
R1
�1

gM
i ðtÞdt of the measured shear strains and therefore, no

matter how small these errors are, Eq. (10) generally has a non-zero solution for the wavenumber b(0). With
this erroneous result, Eq. (13) gives G(0) ¼ 0 for the complex shear modulus, which is incorrect for the real
part. The non-zero frequencies are those at which the Fourier transform of the rectangular loading pulse ta(t)
with duration t0 ¼ 240 ms (Fig. 2(a)) is zero, i.e., f ¼ n/t0 (n ¼ 1, 2, 3, y) or 4.17, 8.34, 12.5, 16.7, y kHz. At
these problematic frequencies, there is no excitation of the disc, and this leads to large errors. In the first
simulated identification test, where four non-zero problematic frequencies are present in the frequency range
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of interest, 0–20 kHz, the parametric results shown in Fig. 3(b) are more accurate and representative of the
material behaviour than the non-parametric ones.

The disturbing inaccuracies of Fig. 3(a) are considerably reduced in Fig. 5(a), which shows the non-
parametric result of the second simulated identification test. Here the duration of the loading pulse (Fig. 4(a))
is smaller by a factor of five, while the time interval used for the measured shear strains (2.80, 3.36)ms, is the
same as in the first simulated identification test. As a consequence, the effect of truncation is reduced and
therefore the result for the complex shear modulus is much more accurate near f ¼ 0. Furthermore, the
problematic frequencies 20.8, 41.7, 62.5, y kHz are five times higher, and therefore they have moved outside
the frequency range of interest, 0–20 kHz. Therefore, the non-parametric (Fig. 5(a)) and parametric (Fig. 5(b))
results obtained from the second identification test are significantly more accurate than those obtained from
the first. Another way of improving the accuracy would be to exclude measurement data at and around the
problematic frequencies.

Figs. 8(a)–(c) show that the tails of the measured shear strains in the experimental identification tests fade
out within the time intervals on which the identification was based, similarly as in the second simulated
identification test (Fig. 4(b)). Later, and quite abruptly, the shear strains become oscillatory. This appears to
be mainly due to waves that are multiply reflected between the rim and the hub of the disc. Sign reversals of the
shear strains occur at the rim, which is free.
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In Figs. 9(a)–(c), which show the non-parametric and parametric results for the complex shear modulus
from the experimental identification Tests a–c, respectively, irregularities can be observed near the frequency
zero and at certain non-zero frequencies. This behaviour is similar to that in the first simulated test. In
Figs. 9(a) and (b), with the same approximate duration of the loading pulse, the lowest frequency with
irregular result is approximately 8.3 kHz. In Fig. 9(c), with a shorter loading pulse, the first problematic
frequency is higher, approximately 11.9 kHz. In the three cases, the parametric results appear to be more
representative than the non-parametric ones, similarly as in the simulations.

Fig. 10(a) shows that there is good agreement between the parametric results for the complex shear modulus
of PP in the three experimental identification tests, although, as shown by Fig. 10(b), large errors e appear at
the problematic frequencies. In particular, the agreement between the parametric results obtained in
experimental Tests a and b are in accord with the assumed linearity of the disc material. In these tests, the
measured shear strain pulses had similar durations but amplitudes, which differed by a factor of two
(approximately 400� 10�6 and 200� 10�6, respectively). Compared with the parametric results of Fig. 10(a)
for PP, obtained with a disc specimen, the non-parametric results of Ref. [12] for the same material, obtained
with a bar specimen, have somewhat lower real part and somewhat higher imaginary part. Because of different
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manufacturers, manufacturing processes, batches, testing conditions, etc., the discrepancies observed, of the
order of 15%, are not unexpected.

It follows from the results that it is desirable to generate narrow shear strain pulses in the disc specimens.
These pulses must be axially symmetric and have sufficient amplitude. One advantage with reduced pulse
width, for a given disc size, is reduced inaccuracy at low frequencies due truncation of the measured shear
strains. Another is that the problematic frequencies increase and may move outside the frequency range of
interest. The generation of narrow axially symmetric pulses with sufficient amplitude requires practical
considerations, which in this study led to the use of a preloaded shaft, a hub with low inertia (Fig. 7(a)) and a
fast release mechanism (Fig. 7(b)). Other possible solutions may be based on the use of rotational impact, as in
Ref. [12], or piezoelectric actuation.

6. Conclusions

The main conclusions of this study can be summarized as follows: (i) The complex shear modulus of an
isotropic and linearly viscoelastic material can be identified on the basis of the evolution of an outgoing shear
wave between two radial positions on a disc at which the associated shear strains are measured. (ii) The two-
dimensional shear wave solutions used are exact in the sense of three-dimensional theory, and therefore there
is, in principle, no frequency beyond which the theoretical basis is not valid. (iii) The method requires a
minimum disc size related to the duration of the load. (iv) The non-parametric results become inaccurate at
frequencies near zero and where the excitation of the disc is weak or non-existent. (v) These frequencies may
be removed from the frequency range of interest by sufficiently decreasing the duration of the loading pulse.
Alternatively, the required size of the disc can be reduced. (vi) If there are problematic frequencies within the
range of interest, the results of parametric identification are more accurate and representative than those of
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non-parametric identification. (vii) Parametric results from experimental tests with loads having different
amplitudes and durations agree well with each other in accord with the assumed linearity of the tested PP
material. (viii) The complex shear modulus of an isotropic and linearly viscoelastic material can be identified
similarly also without restriction to outgoing shear waves. This procedure has the advantage of not requiring a
minimum size of the disc but is computationally complex and may lead to reduced accuracy.
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[1] W. Flügge, Viscoelasticity, Springer, Berlin, Heidelberg, 1975.

[2] P.S. Theocaris, Interrelation between dynamic moduli and compliances in polymers, Kolloid-Zeitschrift und Zeitschrift für Polymere

235 (1960) 1182–1188.

[3] T. Pritz, Frequency dependences of complex moduli and complex Poisson’s ratio of real solid materials, Journal of Sound and

Vibration 214 (1998) 83–104.

[4] J.L. Buchanan, Numerical solution for the dynamic moduli of a viscoelastic bar, Journal of the Acoustical Society of America 81

(1987) 1775–1786.

[5] B. Lundberg, R.H. Blanc, Determination of mechanical material properties from the two-point response of an impacted linearly

viscoelastic rod specimen, Journal of Sound and Vibration 126 (1988) 97–108.
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